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ABSTRACT

Polycyclic thiophenes and furans were synthesized using a one-pot ortho alkylation/direct heteroarylation reaction sequence. Under the optimize d
reaction conditions, aryl iodides were coupled with 3-(bromoalkyl)thiophenes or -furans, affording six- and seven-membered annulated ring
products via formation of two C −C bonds from two aryl C −H bonds.

Catalytic aromatic C-H activation and direct arylation
reactions have recently received significant attention as
effective methods for the formation of C-C bonds.1 Unlike
traditional methods of aromatic C-C bond formation, these
methods avoid the need for stoichiometric amounts of
organometallic reagents, resulting in fewer reaction steps and
reduced waste.

Our group has successfully combined these processes in
a palladium-catalyzed, norbornene-mediated ortho alkylation/
direct heteroarylation reaction of aryl iodides with nitrogen
heterocycles.2 Herein, we extend this methodology to include
the direct arylation of thiophenes and furans,3 forming two
C-C bonds from two aromatic C-H bonds. In this coupling
sequence, sulfur- and oxygen-containing polycyclic hetero-
cycles are generated, some of which form the core of a family
of retinoic acid acceptor antagonists for the treatment of
leukemia and other carcinomas.4

An optimization of the reaction was carried out using aryl
iodide 1a and 3-(bromopropyl)thiophene (2a) and resulted
in the conditions shown in Table 1. Under these conditions,
seven-membered annulated ring product3a was obtained in
89% yield at 95°C (entry 1). N-H acetyl (entry 2) and
chloride (entry 3) substituents were also tolerated on the
aromatic ring, affording3b and3c in 76% and 57% yield,
respectively. Placing an inductively electron-withdrawing
group para to the iodide (1d) afforded product3d in 56%
yield (entry 4). Aryl iodides1a-d have electron-withdrawing
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substituents, so to explore aryl iodides of different electronic
character, 2-iodotoluene (1e, entry 5) was tried and afforded
product 3e in only 19% yield.5 In addition, when more
electron-rich aryl iodides were employed (containing meth-
oxy or N,N-dialkylamino substituents), no desired product
was obtained. These results support an electrophilic palla-
dation mechanism for the direct heteroarylation step.6 The
presence of an electron-donating substituent on the aryl

iodide could be counterbalanced with an electron-withdraw-
ing group, as in entry 6, where product3f was obtained in
52% yield.7,8 As a general trend, it was found that aryl iodides
of greater electron density than1a required higher reaction
temperatures for optimal yields. However, regardless of
temperature, reactions with substrates1a-f were complete
within 18 h.

Our next focus was the synthesis of six-membered ring
annulated products using 3-(2-bromoethyl)thiophene (2b),
which form the core of retinoic acid acceptor agonists when
containing ap-benzoic acid substituent at the 4-thienyl
position.4 As with the seven-membered ring annulated
products, a variety of functional groups were tolerated,
including nitro,N-H acetyl, chloro,N-methyl-N-tosyl, and
an aliphatic ester. Nitro-containing product3gwas obtained
in 73% yield (entry 7), which was noticeably lower than the
yield for 3a. However, yields forN-H acetyl (3h, 82%, entry
8) and chloro-containing aryl iodides (3i, 77%, entry 9) were
higher than those for their seven-membered ring counterparts.
Finally, products3j and3k were obtained in 66% and 71%
yield, respectively. Product formation with2b was found to
be faster than for reactions with2a, as reaction times were
12-15 h.

We next studied the annulation reaction with 3-(3-
bromopropyl)benzothiophene (4) (Scheme 1). Benzothiophenes
are medicinally interesting, as they form the core of the
estrogen receptor modulator raloxifene (Evista)9 and are often
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Table 1. Domino Coupling of 3-(Bromoalkyl)thiophene

Scheme 1. Domino Coupling of
3-(3-Bromopropyl)benzothiophene
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used as indole mimetics10 for medicinal chemistry studies.
In comparison to the coupling with2a, the yields were lower
and reaction times were longer (18-24 h), presumably due
to reduced nucleophilicity of benzothiophene vs thiophene;
however, products5a-cwere obtained in moderate to good
yields.

Finally, we examined the coupling of aryl iodides with
3-(3-bromopropyl)furan (6) (Scheme 2). Nitro-containing

product7a was obtained in 63% yield, which was signifi-
cantly lower than it’s thiophene analogue (3a). However,
the yield of chlorinated product7b (53%) was comparable
to that of the thiophene3c. Reaction with6 proceeds slowly,
presumably due to the poor nucleophilicity of furan, as an
increased reaction time (g20 h) and higher temperatures (105
°C) were required.

The ortho alkylation step likely proceeds through a Pd(II)-
Pd(IV) catalytic cycle11 and generates heteroaryl-tethered
arylpalladium(II) intermediate8 (Scheme 3). Subsequent
heteroaryl-aryl coupling of8 via direct arylation affords
the annulated product. Upon the basis of our previous
research, we have found that the ortho alkylation reaction
proceeds well with both electron-rich and electron-poor aryl
iodides,12 thus the differences in the observed yields may
be due to an electronic effect on the direct heteroarylation
step. The poor results obtained with electron-rich aryl iodides

suggest that intramolecular direct heteroarylations of thiophenes
and furans are promoted by an electron-deficient arylpalla-
dium(II) halide. We propose that electron-rich aromatic
systems stabilize Pd(II) species8, thus reducing it’s electro-
philicity and subsequent reactivity in the direct heteroaryl-
ation step. Conversely, electron-withdrawing groups desta-
bilize 8, resulting in a fast intramolecular electrophilic
palladation followed by proton abstraction and reductive
elimination to afford the desired products.

In summary, we have developed a method for the synthesis
of polycyclic sulfur and oxygen-containing heterocycles
through a one-pot palladium-catalyzed ortho alkylation/direct
heteroarylation reaction sequence. The reaction works well
with electron-deficient aryl iodides and poorly with electron-
rich aryl iodides, providing insight into the mechanism of
intramolecular direct heteroarylation with thiophenes and
furans.
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Scheme 2. Domino Coupling of 3-(3-Bromopropyl)furan

Scheme 3. Proposed Reaction Mechanism
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